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-A computer code has been developed for solving 

incompressible two-dimensional axisymmetric time-dependent 

viscous fluid flow problems involving up to two free 

surfaces. Heuristic models for turbulence are employed 

to extend the method to indefinitely high Reynolds 

number.  Scalar quantities (heat and solute concentrations) 

are also followed, and the fluid may be slightly non- 

homogeneous in the Boussinesq approximation. The method 

is a second-order space, forward time explicit finite- 

difference scheme. Free surfaces are treated using the J 

MAC ("Marker-and-Cell") technique. 
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1.  INTRODUCTION 

■ The MACYL6 computer program was created in response to a 

■ requirement to study the events following the detonation of 

I        a nuclear device far below the surface of the sea. Of principal 

interest are the pulsation anJ upward migration under gravity 

of the steam bubble generated by the explosion and the resulting 

|        redistribution and upward translation of the radioactive bomb 

debris. The MACYL6 code, while adequate to treat the explosion 

I        problem, is also applicable to a wide variety of applied 

problems in various areas.  It is not the purpose of the 

|        present paper to discuss such applications, but rather to 

describe the numerical method itself in detail. Applications 

Eto particular cases (including, of course, the explosion problem) 

will be published in subsequent reports. 

_ The MACYL6 code was developed in an evolutionary fashion; 

an earlier and more primitive version is described in Pritchett 

(1967).  In earlier forms, it has proved useful in the calcula- 

tion of explosion phenomenology and has been successfully 

compared with measured field data (Pritchett and Pestaner, 1969). 

The latest version is a great deal more complicated than 

those published earlier, differing from them in two essential 

respects.  First, scalar transport equations are introduced 

(in addition to the equations of fluid motion) which permit 

the simultaneous calculation of the space-time distributions 

11.        of such quantities as temperature, salinity, bomb-debris 

concentration, and the like.  The effects of these distribu- 
r 

tions may then be reintroduced into the fluid mechanics by 

allowing the fluid density to be slightly dependent on, say, 

I temperature and salinity.  This permits such effects as 

oceanic stability and thermohaline convection to be included 

I in the scheme.  Second, and more important, a recently-developed 

heuristic model for fluid turbulence is an essential part of the 

(method.  This model simulates the effects of turbulence on 

the flow through distributions of turbulent energy and 

I 
I 
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scales of turbulence. The essential features of the 

model are summarized in section II; for justification, 

details, and comparisons with measured data the reader 

is referred to the original papers (Cawain and Pritchett, 

1969, 1970). 

The numerical method is an explicit forward-time 

finite-difference scheme. The momentum equation uses 

a nine-point second-order space difference representa- 

tion of the advection terms, and the general scalar 

transport equation uses the more stable, but somewhat 

less precise "upstream" or "donor-cell" method. These 

are described at length in section III. The pressure- 

velocity (rather than the stream function-vorticity) 

formulation of the momentum equation is used. The MAC 

("Marker-and-Cell") free-surface treatment is employed; 

this scheme, developed at Los Alamos (Welch, Harlow, 

Shannon and Daly, 1966) , represents tha fluid by a 

number of massless "marker particles" which move with 

the flow through the Eulerian mesh and thereby specify 

the position of the free surface.  The treatment is in 

two-dimensional axisymmetric cylindrical coordinates, 

and the flow is assumed to be truly two-dimensional 

(that is, without swirl).  The computer program itself 

is largely written in FORTRAN IV, with some portions in 

assembler language to increase speed; it is currently 

operating on Control Data 6600 equipment. 

, 

.. 

I 

J 

J 
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II.  THE GOVERNING EQUATIONS 

a. The Navier-Stokes Equations 

In Eulerian coordinates (that is, coordinates fixed in 

space rather than moving with the flow) the equations 

of motion for an incompressible, homogeneous viscous fluid 

in a gravitational field may be written in vector notation 

as follows: 

V • u' = 0 (II-l) 

|^1 + V. (u'U') = -V*' + uV2u' + g (11-2) 

where  u' = velocity 

*' = pressure/density (density being constant) 

vJ = fluid kinematic viscosity 

g = acceleration of gravity 

These equations express the principles of mass and momentum 

conservation, respectively.  The two terms on the left of 

(II-2) represent the total time rate of change of momentum 

for an element of fluid moving with the flow.  The first 

term on the right is the rate of momentum production due to 

normal pressure forces, the second expresses the rate of momentum 

diffusion by viscosity, and the third is the rate of momentum 

production by gravitational forces, 

b.  Scalar Transport Equations 

Other transport equations which will prove useful later 

in the development are the transport equations for heat and 

solutes: 

|I1 + V .(U'T') = <V
2
T' + nT/ (II-3) 

^- + V . (U'S') = C^S1 (II"4) 

-3- 



-ä- (UJ ) = 0 
3X,  ■L 

(II-5) 

/ 
SU,     , ,   9ZU'        (11-6) 

If we express the total velocity and pressure fields as 

the sum of their mean and fluctuating components, 

Ui' = Ui + Ui (II-7) 

-4- 
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where T ' ■ temperature 
8 ' ■ solute concentration 
K - thermal diffusivity 

C - molecular diffusion coefficient 

nT ■ rate of temperature change due to heat sources 
The last term in equation (II-3) (the source term) will 

not be pursued further at this time; it represents the 

rate of dissipation of kinetic energy to heat. 

c. Turbulence and the Reynolds Stresses 

In incompressible flow, the equations of continuity 

and momentum (II-l and 11-2), along with the boundary 

conditions, in principle establish completely the entire 

fluid motion.  If the flow is turbulent, however, the 

detailed motion, although theoretically determinate, 

becomes so complex that its actual calculation would 

involve an overwhelming amount of computation. Further- 

more, in general the results of interest are certain average 

properties of the flow, and the large mass of additional 

detailed information available is usually neither required 

nor desired. 

In Cartesian tensor notation, equations (II-l) and 

(II-2) may be written: 

I 

} 

I 
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these Reynolds stresses can be adequately related to the 

mean flow strain rates through the law: 

3U,   3U 

3ui + a 3P       a      3ui  3ui 

where 
(11-13) 

in the averaging process.  Hence, some adequate hypothesis 

nuist be found to approximate this relationship. 

For this purpose, a recently developed model for turbu- 

lent flow (Gawain and Pritchett, 1969; 1970) is used in 

.uiuj - - ^ ukuk 6^ +c(^ + j-l) (11-12) U 

where  6^. - 0 for i ^ j and = 1 for i = j; e is the 

so-called eddy kinematic viscosity. The mean flow 

momentum equation is then: 

The above averaging process, as has been seen, results 

in a great simplification of the physical problem , but 

also involves a significant and irretrievable loss of 

essential information.  This is apparent in the appearance 

of the unknown Reynolds stresses, or alternatively, of 

the unknown eddy viscosity distribution.  To define determi- 

nate solutions, additional relations are needed.  Regrettably, 

such supplementary relations cannot be established from 

the original equations (II-l) and (II-2) by any purely 

deductive process, and therefore empirical hypotheses are 

an unavoidable necessity.  From another point of view, 

the averaged equations of motion show the effect of the 

Reynolds stresses on the mean flow, but the reciprocal 

effect of the mean flow on the Reynolds stresses is lost 

y 
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the present work.  It is similar In concept to earlier 

work of Prandtl (1945) and Is somewhat similar to a scheme 

proposed at Los Alamos (Harlow and Nakayama, 1967; Hirt, 1968) 

Only the barest essentials of the scheme will be sketched 

here; for physical rationale and other details the reader 

is referred to the original papers. 

The basic postulate in the model is that the eddy 

viscosity assumption (11-12) is appropriate, and that the 

eddy viscosity may be adequately represented by a relation 

of the form: 

e = « /uTir A = a^TE" A (11-15) 

where a is a slowly varying dimenslonless function which 

may be taken as a constant outside boundary layer regions. 

A  is a "scale of size" associated with the mean flow which 

may vary from point to point in space and time and which 

will be discussed later. 

Combination of the basic turbulent energy equation 

(11-11) with the eddy viscosity postulate (11-12) yields: 

1 
i 
I 
I 
I 
I 

3  .  u.u. 
" 3x£ (ukHp + <t>l) 

k   k    j       J 

(11-16) 

where 3Ü3 . 9V rjk =^3jr" + ax-^ (mean flow strain rate)   (11-17) 
^    j 
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ü2 = T r.. r.. 2  jk  Dk 
(11-18) 

U.U. 
E = -p (mean turbulent kinetic energy) (11-19) 

The terms on the right of this energy equation represent, 

respectively, turbulent energy production corresponding to 

the work done by the mean flow against the Reynolds stresses, 

dissipation of turbulent energy to heat, "turbulent diffusion" 

of energy, and molecular diffusion.  In the heuristic model, 

the last term is neglected, as it is vanishingly small at 

high Reynolds numbers.  The remaining terms are approximated 

as follows: 

H + J5J «v = til' 

-    U 
2E 

(production) 

(dissipation) 

+ jj- [ye  j£-]    (diffusion) 

(11-20) 

where X is the so-called "dissipation length" or "turbulent 

microscale", and y is another slowly varying function of 

the same sort as a (see equation 11-15) which is constant 

outside boundary layers. 

To complete the model, it is now only necessary to 

establish the "macroscale", A (equation 11-15) and the 

"microscale", X .  We define a generalized mean flow strain 

rate Q  and a generalized mean flow strain rate gradient ft ' as 

follows: 

1 r.. r.. 
ID  ID 

(11-21) 

(see equation 11-18) 
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n'2 = 3fi   3fi 
(-33r) ('33r) (11-22) 

From these definitions/ the following quantity can be obtained; 

(11-23) 

We now define the macroscale as follows: 

, ,x 2  1 .aß2, ^n2, 

A2(x,t) I«(gft) 

J^X/t) 
(11-24) 

where 

I2(x,t) = w(x,x',t)nMx',t) dv' 

all space 

J2(x,t) =  f w(x,x'/t) (fin'(5t',t))2dv' 

all space 

(11-25) 

(11-26) 

and 
r(x-x')Mx-x') 

w(x,x',t) = 
exp t A2(xyt) 

exp 

all space 

(X-X')-(X-XM  dv. 
(11-27) 

A2(x,t) 

Difficulty will of course be experienced in calculating the 

distribution directly from an arbitrary velocity distribution, 

since A appears on both sides of the defining equation.  To 

calculate A explicitly, the following iteration process is used. 

Let the (n+l)-th approximation to A be defined as; 

V2+1(x,t) = _ -"n+l 

'n+1 

(x,t) 

(x,t) (11-28) 

-9- 



where 

I^+1(xft) = | wn(x,x'ft)fi,,(x',t) dv 

all space 

Jn+l(^'t) =  1 wn{x,x',t)(nn'(x',t))
2d 

all space 

v' 

(11-29) 

(11-30) 

and 
exp 

wn(x/x',t)= 

(x-x^)•(x-x#) 1 

A*(x,t) 

exp 

all space 

(x-x')'(x-x') 1 

A«(x,t) 
dv' 

(11-31) 

To start the iteration process, we take ^o^s,x, everywhere. 

Then in computing Ai, we find that the weighting function 

wo is the same everywhere, so we obtain simply: 

J    ß-dv 
.2 _  all space  

1 (11-32) (nn')2dv 
all space 

a constant independent of position.  Thus,A2 is the first 

non-constant approximation to A that we obtain. As was 

discussed in the original paper, the rapid convergence of 

the A 's justifies the approximation 

A(x/t)Si A2(xrt) (11-33) 

: 

I 

IJ 

1J 

.1 

This procedure is also used in the present work. 

-10- 

J 

J 

j 



[ I 

I 
I 
I 
J 
f 

[ 

j 

I 
I 

L 

[ 
i 
i 
i 

The dissipation length X  is formulated as follows. 

Consider two lengths Lj and L2 defined as: 

*• 

2E 
J L2  ■ 

where J is as defined above. 

Mi 
■ S 

(11-34) 

(11-35) 

We now form the relation: 

(11-36) 

where  g is yet another slowly varying dimensionless 

function which reverts to a constant outside boundary 

layers. Numerical values that best match experimental 

data for regions outside the turbulent boundary layer are: 

(11-37) 
a - 0.065 

= 3.7 

= 1.4 

(11-38) 

(11-39) 

d.  Turbulent Scalar Transport 

As has been seen, the scalar transport equations for 

heat and solutes are of the form: 

If+ ^ '"':«'' ' =%*V (11-40) 

where Q' is the instantaneous scalar concentration, the U.' 

are the instantaneous velocity components, C is a molecular 

diffusivity, and nQ, is a source or sink function.  These 

may also be expressed as the sum of mean and fluctuating 
components: 

Q'  =  Q + q 

V ' "j + ^ 

(11-41) 

(11-42) 
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As was done for the momentum equation, the scalar transport 

equation may be averaged. The result is: 

£ a 

3 
(UjQ) = 

3 (C 32Q - u.q) + nr (11-43) 

0! 

In analogy to (11-12) we postulate: 

(11-44) 

- u .q = D_ TT*— 

which defines the turbulent diffusion coefficient D . 

Although the molecular diffusivities of the various 

scalar quantities (such as heat, salt, etc.) may be quite 

different, the turbulent diffusion process is a property 

of the turbulence field, rather than of the particular 

substance being diffused. Furthermore, at high Reynolds 

number, it is to be expected that the turbulent diffusion 

coefficient will be vastly larger than the molecular 

diffusion coefficient.  Thus, for our purpose, it is 

sufficient to write: 

Q  + x^- (U.Q) = iX-  ID    |£_) +  n 
It   ^xT VUju;   HT {UT  WT1   +   Q (11-45) 

We have already approximated the turbulent diffusion 

coefficient for turbulent kinetic energy as ye,  where 

Y ■ 1.4.  Numerous measurements (Corrsin and Uberoi, 1947; 

Schlicting, 1960), suggest that the "turbulent Prandtl number" 

(turbulent thermal diffusivity/eddy viscosity) generally 

takes on values between 1 and 2 for most flow situations. 

This suggests that it is appropriate to assume that 

DT = 
yc    = .l.4e 

(11-46) 

. 

I 

.1 
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that is, that the turbulent diffusivity for turbulent energy 

applies to all scalar turbulent diffusion.  Thus finally we 

obtain: 

H + ilj 'Dj0) - hq '*' %' + "Q (II
-

47) 

The source term for turbulent energy has already been 

defined - it is simply the work input from the mean flow minus 

the rate of dissipation to heat.  The source term for the heat 

equation reflects the dissipation of both turbulent energy 

and mean flow kinetic energy (the latter is usually small). 

Thus, for heat transport, we write: 

II + _L. (u T) = _L. (yeLl)   + ü (^2 + if. 
at  9x. luji;  9x. ^ax.'  a u   I2^ 

where    T ■ temperature 

o - specific heat of fluid 

(11-48) 

I 
I 
I 
I 

e.  The Boussinesq Approximation 

I So far, we have discussed an homogeneous fluid, that is, 

a fluid in which the molecular viscosity and the mass density 

I        are constants.  In oceanic problems however, for example, 

*        even a slight non-homogeneity in density may have profound 

■effects upon the resulting flow.  Although the density 

difference is quite small, the interaction of the gravitational 

acceleration with a slight density stratification may set up 

I        regions of stability or instability which are important in 

the problem.  It should be pointed out, however, that density 

I        fluctuations caused by pressure fluctuations (i.e. slightly 

compressible behavior) are irrelevant in this regard.  Only 

|        density variations due to intrinsic properties of the fluid 

parcel (such as temperature or salinity) have such a stabilizing 

or de-stabilizing effect. Therefore, rather than actual 

-13- 



"in-situ" density, we will be concerned with "potential 

density":  that is, density referred to some standard pressure. 

Thus, we may re-write the mean-flow momentum equation 

in the Boussinesq approximation (retaining the density effect 

in the gravity term but not in the inertial terms): 

3üi   3 3P    3        3ui  3ü-i 
TT + ^ (üiV = - Hr + ^7 ^+e)<nT + ^+ «i 

(11-49) 

where 

C - 1 + ^ ■ f(T,S), S - salinity (11-50) 
Po 

The salinity transport equation is simply (see 11-47) 

(11-51) 

For seawater, for example, the dependence of potential 

density on salinity and temperature is well known experimentally 

(Knudson, 1901).  For temperature in centigrade degrees and 

salinity in parts per thousand, over a normal range of conditions 

at one atmosphere the data is well represented by: 

onca/mM - 1000 - (T-3.98)2(T+283) 
p(kg/m ) - 1000 - 503.57 (T+67.i6) 

+ [0.0634 + 1.4708 (frjffi " 0.00157 (^"°-°3)2 

+ 0.0000398 (-Jyg-J^'jxt^-r (18. 03-0. 8164T+0.01667T2) 

x (-0.2014-H.4708 (^^3)-0.00157 (S^Q^)
2 

+ 0.0000398(^^|)3)+ 1 - ^^(4.7867-0.098185T 

+ 0.0010843T2)] (11-52) 
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f.     Summary of Principal Equations 

In two-dimensional axisymmetric cylindrical coordinates, 

the field equations may be written as follows: 
Continuity: 

(ru) + 8v 
F 7F vtu' T I? 

Radial momentum: 

= 0 (11-53) 

9u . 1 9  /  2v ,  9 /  » 
?t + F ^7 (ru > + 37 (uv) " 

or !  9 t~c*   ^u^  e*u ^ 3  tr*   3VN i 2l :r ?r (re* -rzr) — + ^r (e* ^r) ] F Sr" 

9z ie ^z 

9P 
9r 

SF r2 

9v. . 
?F) ] 

tt 9r' 

(11-54) 

Vertical momentum: 

9v . 1  9 
S + F37 (ruv) +f7(v2) = 

2^IF ^^*TI^H 

+ i _i [re* (JH 
r 9r ire  ^92 

-Il+ ^ 
9rn 

(11-55) 

Turbulent energy: 

^ +  - —   (ruE)   + Ä-   (vE)   =  i i-   (rvc~)   +  -2-   (YE—  ) 9t       r  3r   Vi•u,:,'       az   vv,:';       r  br   vrYe9r;       9z   tYe9z   ' 

2E 
+  £Q2- u^ (11-56) 
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Heat: 

4[ ^ " (Ir) W + W ' + (37+ sF5    (II-60) 

-16- 

|T + i ^ (ruT) + 1^ (vT, - i ^ (.ve ||) + ^ (ve|I, |j 

+ H (IE +^2) (11-57) LI 
a     X2 

Salinity and/or other solutes: 

H + F IF (rus' + IF <VS' - F IF <«= If) * h ^H' U 
(11-58) 

i 

where: 

r = radial coordinate 

z = vertical coordinate 

u ■ radial mean flow velocity 
v = vertical mean flow velocity 

e* = e + u 

u = molecular kinematic viscosity 
P = total pressure 
E ■ turbulent kinetic energy per unit mass 
T = temperature 
S = salinity   (or other solute concentration) 
5 = density deviation parameter ■   (1 + ^£- )   - prescribed 

function of S and T. ^0 

a = specific heat 
e = eddy viscosity =    a/JIT A 
A = turbulent macroscale = I2/J2 

ß2 «(generalized mean flow shear rate)2   = 

J 

■ o 



(rnn M2  .1 n^l,! + (ijijt, (IZ-«1) 

//w(r,r',t,i')  dr'dt' 
(IX-62) 

•     m»\\lAm»Am» r2(r ,»   -  ffwU.r'.z.z') (nfl'(r,.»>))fdr 
J   (r'2)   " /;w(r;r,:z!z'i<ir'di'f     "  

ds (11-63) 

E 
[ 
[ 
I 
I 
I 
I 
I 

A2 

o 
ffQ"  r dr d» 
//   (nnM'r dr dr 

X2       «   (turbulent roicroscale)'  ■ u    ■ 
B(2EJ,)'• 

w(r,r',2#2')   -  /PHr   (ifS_)   •   l .» ' 

^(x) 

a 

2x 

o 

0.065 

e -2XM1-CO. 6)  de 

J      -       3.7 

Y       »       1.4 

(II-«4) 

(11-65) 

(11-66) 

(XI-67) 

(11-68) 

(11-69) 

(11-70) 
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III.  THE FINITE-DIFFERENCE METHOD 

a. The Computing Mesh 

Consider the region of interest to be divided into a 

number of toroidal cells of rectangular cross-section and 

not-necessarily-equal cross-sectional area (see Fig. 1). 

If we denote a cell by the indices (i,j) where i varies with 

radius and j varies with height, we may establish the 

following nomenclature: 

Ar. = radial dimension of cell ij 
i 

Az 

! ri-l/2 
ri+l/2 
Zj-l/2 

Ar, 

Ar 

•j+1/2 

i-1/2 

i+1/2 
Azj-l/2 
Az 

j+1/2 

= vertical dimension of cell i.j 

= distance from axis to center of cell ij 

= distance from bottom of mesh to center of cell ij 

= distance from axis to inner boundary of cell ij 

■ distance from axis to outer boundary of cell ij 
= distance from bottom of mesh to lower boundary of cell ij 

= distance from bottom of mesh to upper boundary of cell ij 

= distance between centers of cell ij and cell i-1 j 

= distance between centers of cell ij and cell i+1 j 

■ distance between centers of cell ij and cell i j-1 

■ distance between centers of cell ij and cell i j+1 

b.  Continuity and Momentum 

The field variables are calculated at specified points 

within the cell matrix as shown in Figure 2. Scalar quantities 

are defined at the cell center, for example P^, Ei ., T^., ei., 

X.. and so on.  The horizontal velocity component is defined at 

the midpoint of vertical cell faces and the vertical component 

at the midpoint of horizontal faces (thus we have u^+ ,., u^_ ,., 

Vij^j' ^j-^' 

The field equations (listed in section Jl-f) may now be 

written in finite-difference form.  The finite-difference analogue 

of the mass conservation requirement (11-53) is: 

Preceding page blank 
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.1 

ü 
D..     =    velocity divergence in cell  ij 

=   "TTZTT Iri+J|ui^j- ri- l|ul- Jsj1 

D 
IJ 
IJ 
ü 
ü: 

l *   *   
+    ÄzJ tui+Jsj-J5 vi+i5J-Jj "ui+ hj+H vi+^j+ H] 

y 

+ SIT fvij+ I," ^j-^ f111'1) 

=     0 

The radial and vertical mean flow momentum equations (11-54 

and 11-55) become respectively: 

+    Ä^  *il  - ^1^ 

* 
r. e. . 
4^-  (u.^  -u,^)] Ar. ^i+Jsj       "i-Jsj 

(W2 A2j       ^i^ 
1 

(v      - v    )- U^ISI (vi+lj+J5      ^j+Jj'       Ari+, 

a 

+ Äi~  ^i+JsJ+Jj^z.^     (ui+^Jj+l-ui+>sj
, r 

(equation continued next page)      I 
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i 
i 
i 

1 

i; 

o 
0 
i: 
[ 
i 

i 
i 

^^<Vi i+lj+Js " Vij+J5)) 

-  e i+hi-h  (Äi-^ (ui+J5J " Ui+Jsj-1)" IFT^ (vi+lj-'5"vij-Js))l 

(III-2) 

and 

I—) r.Ar. [ri^  Ui-hi+h 
vi' .-JSJ+JS 

1 

2 E* 
r ij« 

I 

— 1 

,  1 

fir 

tpij-pij+l
]+ 5ij+^ 

Az 
j^  aZj+l 

riAri 7 l      AzTT^ (ui+35j+l ui+'s:r 
'J+Js 

Ti^r^ (ui-«+i -ui^)] 

:
~Ä1?~  Iri+Jsei+J5J+'s(Ari+,    (vi+lj+Js"vij+Js) 

Az^ (u -U^a     )) 
j+j5     -i+>,j+l    "i^j 

-  r.   , e (■! (v^^.   -v. i-J5e'i-J5J+JsvAri_^   v  ij+Jj    "i-lj+Js 

1 

) 

Az (u -   u,^.  .))] 
j+^   vui+^j+l       "i+Jsj 

(III-3) 

The interpolated quantities appearing in the above equations 

are defined as follows: 
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ü 

  1 1        Azi+1 AZi_l 1    AZ-! 

.1 
+ uiJ-l ti xi^ ' (I11-4' 

v 

1 ri+ri-J* Ari-1 

♦ W VixuK     I   ^        )(   T ÄT^ )] (III-5) I vi+l j l V~TT ' K 1 Ä? 
i+Jj 

where 

and 

(III-8) 

ri±^
ri, ,  Ari   4 #,     1  

Ari vi+JsJ^ ■ •» viD^t(Fi^r) (
ä^

)
 

{1- T ä^) 

(equation continued 
next page) 

J 

uij = ui^j(-?f [1",*("?f+ 1)J) + "i-^^^-Ff +1,])       ^ 

(III-6) J 

vij ■ I ^ijV^j-^ (III-7, Ö 
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I 
[ 
I. 
I 
1 
! 

I 

i: 
o 
i: 
i 

hi 
! 

I 

1 

I 
I 

— 

ri+1+r.       Ari+^ Ari+% 

r.   ,+r.     Ar. Ar. 

r. .. +r. .,  Ar. ,.      Ar. .. 

ri+l ri   *ri+h i+H 

ui+hj+h - Ui+Jjj+Js 

(III-9) 

(111-10) 

^j^ = vij+J|(i^ £i--) + vi+lj^(^ ^i--) 

(HI-ID 

Ar.Az. 

"W+h    ei+lj+l
(Ar.+JsAzj+j5

)   + ei+lj
(Ar.+j5A2.+Jj

) 

Ar..,Az . Ar. .,Az. 
+ e 

ij+l
(Ar.+JsAzj+^  ^j^Ar.^Az.^) 

*      *  Ari+1    *    Ari 

Az.+1 Az. 

(111-12) 

(111-13) 

(111-14) 

Furthermore, forward time differencing will be used throughout; 

that is, for example. 

N+l   _  N      A N+Jj  au.N 
+)sj 

(111-15) 
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where quartities with superscript (N) are "old" values and 

with (N+l) "new" values; AtN+^ is the time interval between. 

c.  Scalar Transport 

The scalar transport equations are handled somewhat 

differently.  The general differential form for scalar 

transport is 

.; 

.: 

II 
H - - ^ I? <- ö> - li ™ + £ IF ^ l§>+ h*'$* \     y 

(111-16) 

The finite difference analogue is as follows: 

^^  "   (l-D.1AtN+,s)[?i^i   ^iVi-^Uj 1 

"  ^^i^jQW + Ä^-(vij-'5
Qij-js-

vij+>5
Qij+'5

)1 

+ Fpr~ I4ri+.Y£l+iij   ^i+Xj-0!]1 

II 
: 

j 

C  ■ 0i3+ ^ <!?'« (I11-181 .        3 

The velocity divergence D. . (see III-l) appears in the I 
rrinvor1*-i r»n   4-01-11110   aHnvo   aa   futrt-   nf   a   r?r>rr*»of-1 nn    f ant-nr.        Tn • 

" ^f 'Olj -Oij-i" + «o^ !I11-17' 

and we will again update values using forward differences; 

convection terms above as part of a correction factor.  In 

-26- 
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1. 
f. 
1. 
i; 
i 
i 

principle D.. should always be identically zero, but in 

the calculational scheme this i3 not always true, and 

small velocity divergences may appear, as will be discussed. 

This correction factor tends to negate convective errors 

in scalar transport arising from small but finite velocity 

divergences. 

The interpolated concentrations appearing in the 

convective flux terms are defined as follows: 

Qi^j = Qij    if    ui^j i 0 

= Q, ,.  if    u. i . < 0 

Qij^ " Qij    if    Vij+^
0 

" Qij+1  
if    vij+% <   0 (111-19) 

The source terms for the various scalar quantities are 

as follows. For solutes, there are no sources, so: 

I 
i 
I 
( 

I 
I 
I 

n. =   o 
ID 

For turbulent energy, we have (see 11-56) 

2E. . 

(111-20) 

(111-21) 

and for temperature, 
2E 

nT.  = }   ^^  ^ij) (111-22) 
iD      ij     J 

where the generalized rate of mean flow shear is given by: 
2 

,3Uv 2 3u, ,3v, ,3v4 " ,-. = 4[(^):. - («*)44 (*r)i.. + (^44} 13 ar'ij   3r ij v3z ij '3z'ij 

■3z' 
where iD Wij' 

(111-23) 

/3u.     1  - . 
Wlj = IFT  (ui^j -"i-Jsj) 
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IiJ(vij^ " ^jV 

1r _-1 7[ I? i+h ^i+lj+Jj^i+lj-^ij+^ij-^ 

" Ir^;  (vi-lj+J5 
+vl-lj->|-vij^-vij-«i)] 

Si 
J-JJ 

(u 
i^j-l+ui^j-i-ui^j-ui-%j)] 

d.  Turbulent Mixing 

To establish the eddy viscosity distribution we must 

first fix the distribution of the macroscale A, which in 

turn depends on certain space integrals of Ü2 (defined above) 

and the quantity (ßn')2as discussed in section II-c.  This 

latter quantity is expressed in finite-difference form as 

follows:        (fi2.^.- Of ,.)* 

13        (^.J.,+ Ar. .)« 

+   13+1 ^J-1 

(Az.^+Az.^) 2 

The "averaging distance" Ao may now be formed as; 

all cells 

(111-24) 

r   (fi2,. •) r.Ar.Az. 

AS 
JL 

ID   i  i  D 
(111-25) 

all cells 
I l       {ÜÜ')2     r.Ar.Az. 

i   J 
1  i 3 
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and the "characteristic integrals" Iz and Jr are: 

all cells 2       2 

'« 
- 

I 
i' 

(fi i,y) (111-26) 

all cells 
I 

i' j 

all cells 

2 
E 

i' 
^ Wi,i',jfj' 

m,2
ity) 

{111-27) 
all cells 

Z       E  w. ., . . . 

where 

1 
I 

i 

i 

! 

wi, i', j, y 

^i'  ^^TT')   e 

-[ 
(r.  -r.) + (z., - z.) 

Ar.Az. 

(111-28) 

and ^(x) is defined in equation (11-67); it is illustrated 

in Figure 3.  Now, the "scales of size" may be formed. 

The "microscale" or "dissipation length" is just: 

u 
ij      ß(2E..J2..)1/6 

ij  i]' 

and the macroscale is: 

A2..     =     I2../J2.. 
ID ID       ID 

(111-29) 

(111-30) 

whence: 

eij ■ a/^IT Aij (111-31) 
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e.  Explicit Solution for Pressure 

Examination of the preceding field equations shows 

that, if the entire set of velocities and O's is known, the 

changes in these velocities and Q's over a short time 

interval can be calculated. The only missing quantity is 

the pressure distribution (PJ-J«  In incompressible flow, 

the pressure distribution may be found from the mass conserva- 

tion constraint (V. u* 0).  We first write an expression 

for the time rate of change of the velocity divergence in 

cell ij; 

D./^-D  N 
JJL ij  _  1   r_   ,3u4N   _   ,3u.N 

At N+JJ   " rjlrj [ri+'i(?t,i+»ij'ri-«s(yt,i-JjjJ 

.  1  r,3v.N    m   ,3v,N    , 
+ KzT  n3t,ij+Ji  (Tt'ij-Jj J (111-32) 

If the finite-difference momentum equations (III-2 and III-3) 

are substituted into this expression, considerable cancellation 

occurs, and the result is: 

D..N+1-D..N 

AtN+Js 
  rfi+iL (p -p 
r.Ar, lAr...». irij  i+ij 
i i i+H 

+ ^7- *ij'pi-ii)]+ ^i^; ^ij-
pij^, 

Az 
j-% 

^lj-Plj-l>l ^ij 
N 

(111-33) 

where C.. ■ 

r.Ar. lAri+j5 
(riuij -ri+l

ui+lj  
)+ Ar 

i-H 
(r.u..2-r. i"ij 'i-l-l-lj )] 

+ _i_ [«.J— (7~72-v.. ,2)+ T—i— (v~r2-vrr—2)i 
j äzj+H    ij    ij+1     ^Vh    i:j    ij"1 

(Equation continued on next page) 
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*_     - * *. 
+ FTEr-KT tW[u v +uv* ]i+ht<[u v+uv ]i+hjW 

+ r..^ ([u*v+uv*] i_35.+js- [u*v+üv*] .^j,^) ] 

Az..,        Az .   . Az. Az 

* ^ri+l 
+ ei+l j triÄriAri+j5Ari+1   (ui+|j"ui+ä5J)' 

* 2r.   , 
+ e.   ,    . [—T—1^=—T   (u.   ,.-11.   3 .)] i-l j lriAriAri_^Arii_1   v i-hj    i-2rJ 

+ eij+l   fAz.Az.^AZj^ (vij+| -vi3+h)] 

+  eIj-l   tAz.Az.^Az.,,   ^ij-^ij-l^ 

-  ^    [        2 

+35 ij   l(Ari)2x"i+35J  "i-Jjj' lÄr^_7 T Ar. 

+ 7777 ^ij+^ij-^ (
äF-T 

+ äT: (Az.) J    ^       J   2 ]-Js ] +'5 
-)] 

2u. 
+ e*       L^L       1   -e* r^lM. i-Jjj ^iAr.Ar.^J i+Jsj   'r.Ar.Ar.^ 

2r -u. -v. . 

i-riAzj        ^j^ ^i+Js i+)sj+JsLr.Ar.Az.   l    Az^., Ar. n 

* 2r.   , u.   , .-u.   , .   ,       v..   ,-v.   ,.   , 
E:i-ä5J-J5lriAr.Azj   ^  Az^j ^i-^ 

-  e 

-  e 

2ri 
i+'sj-^^.Ar.Az. v     Az.   , J 1     1     D j-*« 

"Ijjg       (
Ui+^j~Ui-H5J-l  + 

Vi+lj^~Vij-is 
Ar i+h 

)] 

[-     A^     A, (—T^ + IJ.  J  i-Jsj+VrTArTSzT        ^j+ij )] 

(111-34) 
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The pressure equation is obtained by setting 
N+l D..    (the "new" value) equal to zero. This is a 

"self-correcting" feature of the method; even if 

at some time large divergences do exist, they will 

be quickly eliminated.  That is, we arrange the 

rate of change of D.. so as to tend to "zero out" 
N+l 3 

D..   .  Therefore, the pressure equation is: 

W + sfri (pirpi-ij)I 
f Vri l **i+H  V ^ i+1r       ^i-Jj 

I + ÄiJ^ (Pij-
Pij+1

) + A^ ^ij^ij-l^ 

+ ^. = 0 (111-35) 

where 

D..N 

Rij ^ij +^ (III-36, 

Note that R.. contains only velocities, eddy 

viscosities, and ^g's.  Therefore, if we are given 

a set of these variables, equation 111-35 may be 

solved by an iterative technique for the pressure field. 
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IV.  BOUNDARY CONDITIONS 

a.  Fixed Walls 

The computing mesh is bounded within an upright circular 

cylinder, whose walls are rigid and impermeable.  These walls 

are considered to be "free-slip" - that is, along a wall, the 

velocity component normal to the wall must be zero, but the 

tangential component is not constrained.  This is justified 

since we are primarily concerned with problems at high Reynolds 

number, and it is to be expected that the boundary layer 

thickness will be negligibly small compared to the grid resolution. 

This "tank" may be of arbitrary diameter and height, so that 

boundary effects may be minimized by moving the boundary far 

away; on the other hand, boundary effects may be of interest 

(for example, the effect of a nearby sea bottom upon the behavior 

of an underwater explosion bubble). For convenience, we will 

designate the boundaries as the "wall", "ceiling", "floor", 

and "axis".  The axis, of course, does not represent a true 

physical boundary, but is rather an axis of symmetry.  However, 

boundary conditions appropriate for a physical boundary are also 

appropriate here. 

The finite-difference equations when applied to cell ij require 

quantities located in neighboring cells; it is therefore necessary 

to add one layer of cells outside each boundary (see Figure 4). 

The boundary conditions are then applied by inserting values for 

the field variables in these fictitious cells at each time step 

such that the boundary conditions are satisfied.  The field 

equations provide exactly the information required to obtain 

these relations.  For simplicity (and without loss of generality) 

we use: 

Arl = Ar2 
ArM = ArM-l 
Az, = Az2 
A2N = AZN-1 

Preceding page blank 
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FIGURE  4:     LAYOUT  OF  THE  COMPUTING MESH 
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where i = 1 is the layer "on the other side" of the 

axis, i = M is the layer outside the wall, j = 1 

is the layer under the floor, and j = N is the layer 

above the ceiling.  In general, the boundary conditions 

are that no flux of transported scalars (whether 

convective or diffusive) may occur through a boundary, 

and that the velocity constraint mentioned earlier 

applies.  These will be satisfied if the following 

obtains: 

Axis: u. . ■ 
-U2 >,j 

Vlj^ 
s V2j*, 

Plj 
3 

0 

P2j 
elj = E2j 
Qlj 

= Q2: 

(IV-1) 

Floor: 

Ui+h  1= "i+H  2 
Vil % =  0 

vi H    = -vi2 h 
Pi 1  = Pi2-h2^Zl (IV-2) 

ei 1  =  ei2 

Qi 1  =  Qi2 

h  1  " h2 
I Ceiling: 

ui+JsN - "i+JjN-l 
ViN-J5 " 

0 

viN+J5 _ ~viN-| (Equation continued) 
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Wall: 

PiN = PiN-l+?iN-lgA2N 

eiN = eiN-l 

QiN 
= QiN-l 

^iN 
= 

^iN-1 

UM+JSJ 
= 

rMrM-,3     u 

"M-^j ■ 0 

VMj+35 
= VM-lj-H| 

'Mj 
= PM-lj 

+ u« ,.(^I)M^ (%(^+ i))2 
M-2 3  r^i      r^        r^ 

■^—(1- %(^+l))2] 
rM-Js rM 

_ 

.1 

(IV-3) 11 

D 

Ü 

. 

0 
(IV-4) 

u 
! 

i 

! 
eMj =  eM-lj 

QMj     ' QM-lj 

where Q is E, T, or S. 

b.  Free Surfaces 
.1 

The boundary conditions at a free surface may be 
M summarized as follows: 
J 

1) There must be no stress tangential to the surface. 

2) Pressure must be continuous across the surface. 

3) There must be no Q transport through the surface. 
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The problem is, where are these conditions to be 

applied, or rather, how are free surfaces to be located 

within the mesh?  In order to identify which portion 

of the mesh is filled with fluid and which portion is 

empty, we insert a number of massless "marker particles" 

which move with the fluid and which participate in 

the calculation only to the extent that they allow the 

computer to "flag" cells as full or empty.  In particular, 

at the end of a time step, each particle is moved with a 

velocity which is interpolated between adjacent principal 

velocity points in the mesh.  That is, designating the 

coordinate of particle k as f^, z^: 

For r. < rk <ri+1 and z..^ zk< z.^ , 

Vk = vij^ 

+ {ZjQlh-)   ^ij+^ij-^ 
z,.-z. 

ri-r.  z,-z. 

and for 

+ 'S?7^' 'Ti^' 'n+lj+iTij*.' 

+ f1" -lif* 'üIT^-' «"i+lj-^lj-i,' 

ri-i, i fk • ri+i,      '        zj - zlc< 2j+l ' 
z. -z 

(IV-5) 

u, (ui^j +^(ui^j+r
ui^j)) 

ri-Hs   n   (ri+Vrk) (ri-Hs"rk)   n 
- 11 2r.Ar. J' 

i    i 

z,-z ri-3sf(
ri-H5+fk) (ri-tVrk) 

+ (ui-35j
+ÄiT^fui.Jsj+r

ui-'Sj
])(7-[ 2F7rTi i) 

(IV-6) 
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Then,  we replace: 

'k"+1 - *** * akN+1 itN+ h (IV■7, 

zk
n+1  = zk

N + v^
1 At"* ■» (IV-8) 

J 

., 

: 

.1 

Two sorts of void, the air and the bubble, are 

allowed for in the scheme, and therefore we have two free 

surfaces.  Cell status is assigned by the flagging of each 

cell in one of five ways: 

AIR:  The cell is empty (contains no particles) and 

is in the region designated as air. 

BUB:  The cell contains no particles and is within 

the bubble. 

AIRSUR: The cell contains particles, but is directly 

adjacent to at least one AIR cell. 

BUBSUR: The cell contains particles, but is directly 

adjacent to at least one BUB cell. 

FULL:  The cell contains particles, and all adjacent 

cells also contain particles, i.e. are either 

FULL, AIRSUR, or BUBSUR. 

Note:  "Adjacent" in the above context means "sharing 

a side with" - diagonal relationships are not 

considered. 

Thus, at the beginning of a problem, each cell is flagged 

in one of the above ways.  At the end of each time cycle, 

the particles are moved, and the cells reflagged if necessary. 

A typical arrangement of particles and cell flags is shown 

in Figure 5.  Only certain transitions are permitted, however - 

for example, a cell previously flagged as FULL may not, in one 

J 
- « 

.; 

ü 

] 

] 
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bubble volume and/or time).  For velocities in surface 

I cells of either type, if one side is "open", the requirement 

that D.. ■ 0 supplies the missing value.  If more than one 
I side is open, we require that 

I 
I 

cycle, change to an AIR cell. This rule is to prevent the 

spontaneous opening of voids deep within the fluid due to 

the happenstance that the cell should momentarily contain 

no particles. To become an AIR cell, a FULL cell must first 

pass through AIRSUR status. These transition rules are 

summarized in Figure 6. 

One other pathological condition can occur, however. 

A cell may attempt to become an AIRSUR and a BUBSUR cell 

simultaneously - that is, it contains particles, but is 

faced on one side with an AIR cell and on the other by a 

BUB cell.  What is done when, and if, this occurs is to 

assume that the bubble has "leaked"; the layer of fluid 

between the air and the bubble has become less than one 

cell thick.  Computationally, when this condition is 

detected, all BUB and BUBSUR cells are subsequently re- 

designated AIR and AIRSUR cells respectively.  It should be 

pointed out, in passing, that there is no requirement that 

there be a bvbble involved in the problem at all - the MACYL 

scheme can handle single-surface problems as well as two- 

surface ones. 

The application of the boundary conditions is fairly 

straightforward, once the flags are known on each cell. 

For pressure, we merely say that the pressure in an AIR 

or AIRSUR cell is simply P. (an input constant) and that 

in a BUB or BUBSUR cell is PD (an arbitrary function of 
s 

i fj (ru) = 0 

If ■ o 
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separately   (this is analogous to the treatment in Welch et.  al., 
1966) .     Note that a cell with all four sides open contains 
fluid which is simply in a gravitational trajectory. 
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V.  STABILITY AND ACCURACY 

As is true of finite-difference schemes in general, 

the MACYL code must contend with potential numerical 

instability.  These instabilities are intrinsic in the finite 

resolution of the space-time grid, and in general may be 

found by a comparison of the finite-difference equations 

with the original differential equations using, for example, 

0        Taylor expansions. The first (and most obvious) restriction 

is the incompressible analogue of the Courant condition, 

which arises from the convection terms in the equations: 

1 
AV 

At << -~    everywhere (V-l) 
| M 

where AX is a space interval, and u is a velocity, (either a 

material velocity or a gravity wave phase velocity). Thus we 

obtain two requirements: 

AX ' At  <<  (p (V-2) 
max 

I. 
i: 

i 
i 

At  << / 
27r(AX)2 

g W tanh(2iTH/W)   ' (V-3) 

where 

U
MAX 

= maximum material velocity 

W    = longest gravity wavelength present 

(usually the mesh diameter) 

H    = maximum fluid depth 
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Physically, this means that no disturbance is allowed 

to traverse more than one cell in a single time step. 

Numerical experiments suggest that adequate accuracy can 

be maintained if we require that: 

At < 0.4 - 
lu 
M  (V-4) 

'max 

At <<  (AX)      everywhere (V-5) 
e* 

Actually, this requirement will only be important when 

diffusive effects dominate convective effects: for the 

class of problems of interest here, (V-l) will generally 

override (V-5). To maximize efficiency, at the end of 

each time cycle, we calculate the maximum time step consistent 

with numerical stability and use it for the next interval. 

Still another requirement relates to the value of the 

eddy viscosity.  This requirement arises from high-order 

errors in the convection terms of the finite-difference 

representation of the momentum equations.  These high- 

order errors are of a diffusive character, and the "artificial 

diffusivity" thus created may be of either sign. We require 

that: 

J 

.! 

J 

Another constraint on the time step relates to rates 

of diffusion.  To prevent instability, we must require that: 

.: 

. 

0 

i 

e >  |c(AX)2n| (V-6) 

where c^O.?.  If the eddy viscosity at a particular space- 

time point is not large enough to satisfy (V-6), we "boost" 

the eddy viscosity so as to just satisfy the requirement. 

It should be noted, however, that this "boosting" occurs 

only in the "vorticity-diffusion" terms of the momentum 

i 
i 
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equation.  That is, the turbulent-plus-viscous terms 

in the momentum equations are of the form; 

r-direction:       Ä 

or, 1 3 ,  * 3u,   eu ^  3 , * 3v. , 
2[ F 97 (re ^ ■ P" + 37 (e  97,] 

3z   l  e       l9z       3rn 

z-direction: 

or   1  3      ,     *   3u.   ^  3      /   *   3v. , 
2t  F 37   (re     ^   +  37   (e     37)] 

and the boosted viscosity only appears in the finite- 

difference analogues of the equations where indicated by 
* 

e '.  violations of this requirement tend to generate 

spurious wave-like disturbances or vortices of wavelength 

one computational cell. 

One test of the accuracy of the method is whether or 

not transported quantities (momentum, salinity, etc.) are 

conserved rigorously.  It may be shown directly from the 

finite-difference equations that this is so, and therefore 
-15 the error is of order computer round-off error (about 10  ). 

Another test of any incompressible scheme is whether mass, 

or fluid volume, is conserved.  If D.. were always exactly 

zero, this would be true by definition.  As has been shown 

however, it is not generally zero, but only of very small 

magnitude (D.. may, of course, be made arbitrarily small 

by "tightening" the convergence criterion in the pressure 

iteration procedure).  Another way of checking on mass 

conservation is to keep track of the total fluid volume as 

the calculation proceeds.  There is a slight ambiguity 

here, however.  The problem is, for a surface cell, how 

much of the cell is considered to be full of fluid? 
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Somewhat arbitrarily, the following rules were chosen to 

evaluate the best estimate of the fluid volume in a 

surface cell: 

1) If the cell is open on one side only, or on two 

opposite sides, it is considered to be half-full. 

2) Otherwise, it is considered one-quarter full. 

Naturally, total volumes calculated in this way fluctuate 

slightly from cycle to cycle due to the surface ambiguity. 

The amplitude of the fluctuation decreases, of course, as 

resolution is increased.  It has been shown, however, that 

even for problems carried out through thousands of time cycles, 

the mean of the fluctuating values does not shift, but 

remains the same throughout the calculation.  Therefore, 

the small D..'s are in some sense randomly distributed, and 

their effects cancel. 

Ü 

i 
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VI.  THE COMPUTER PROGRAM 

The necessary tools have now been developed to assemble a 

procedure for solution.  If, at time t, we know the entire 

state of the system, we may update the field variables to their 

values at t+ At through the following procedure: 

Step 1 - Calculate and store values of R.. (defined by equations 

111-34  111-36) for all FULL cells. 

Step 2 - Iterate a solution for the entire pressure field in 

FULL cells using a Gauss-Seidel iteration procedure in 

connection with equation 111-35 until the entire P.. 

field converges.  The criterion for convergence is: 

*P. . - k~1P. . 

< 10 -4 

Fij 
k-1 P. . 

ID 
+ u^j + v.^+lgHl  + P - P A  ^R 

Step 2 - 

^te£4 - 

Step 5 - 

Step £ - 

Ste£ 7 - 

for all ij 

where superscripts k-1, k  denote successive passes 

through the iteration loop, and H is the maximum fluid 

depth expected in the problem. 

Calculate new velocities based on the new set of 

pressures, the momentum equations (III-2 and -3), and 

the boundary conditions discussed in section IV. 

Calculate and store values for the quantities fi2j • 

and (M')2.. for all FULL, AIRSUR and BUBSUR cells 

(111-23,-24). 

Compute the "averaging distance" Ao per equation 111-25 

Calculate the Vacroscale" (A..) and "microscale" 

(A..) distributions for all FULL, AIRSUR, and BUBSUR 

cells as outlined in equations 111-26 through 111-30. 

Evaluate the eddy viscosity distribution (e^^) in all 

FULL, 'IRSUR, and BUBSUR cells (111-31). 
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Step 8   Update time (tN+1 = tN + A tN+,s); calculate a new 

time interval based on stability requirements V-4 

and V-5; output the state of the system. 

Step 9   Update E.. (the turbulent energy distribution) 

using equations 111-17 and 111-21. 

ntep 10  Update the temperature distribution (the T..'s) 

using equations 111-17 and 111-22. 

Step 11  Update solute concentrations using 111-17 and 111-20. 

The program allows for two solute fields; one is 

usually salinity, and the other may be used to 

follow a dissolved contaminant. 

Step 12  Re-evaluate ^. for all FULL, AIRSUR and BUBSUR 

cells using the new T..'s and S..'s, and the 

appropriate "equation of state" for the fluid 

(such as equation 11-52 for ssawater). 

L>tep 13  Move the marker particles according to IV-5, -6, 

-7, and -8. 

Step 14  Reflag cells as required, as discussed in section 

IV-b; re-evaluate Pn (the bubble pressure) and return 

to  step 1. 

I 

y 
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VII.  CONCLUSIONS 

The MACYL6 computer program is currently operating on 

the CDC 6600 computing system at the Lawrence Radiation 

Laboratory in Berkeley, California.  As has been discussed, 

earlier versions of the scheme have been checked against 

both analytic solutions and experimental data, with favorable 

results; in general, the agreement with data is within error 

of measurement. The program will shortly be put to work in an 

investigation of the explosion debris transport from very 

deep underwater nuclear explosions.  The potential of the 

scheme for application to other problems associated with under- 

water explosions, as well as oceanographic and meteorological 

problems in general, appears to be great. 
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APPENDIX - LIST OF SYMBOLS 

'■'  Part III: et seq. ; space grid indices in r, z directions 
respectively (subscripts) 

2 I   first characteristic integral 
2 

J   second characteristic integral 

M   maximum value of i index (denotes "wall") (subscript) 

N   maximum value of j index (denotes "ceiling") (subscript) 

N,K+1 
integer index denoting time step (superscript) 

P   mean total pressure = $ + |E 

PA  air pressv^re 

PB  bubble pressure 

J 

j 

J 
C molecular diffusion coefficient 

D. .  velocity divergence in cell ij 

E Turbulent kinetic energy per unit mass 

e 2.71828... 

g acceleration of gravity (vector) 

g vertical component of acceleration of gravity 

H maximum fluid depth expected in problem 

i, j,k 
Part II: Cartesian tensor indices (subscripts) 

. 

: 

i 

j 

j 

j 

j 

j 

Q'  instantaneous generalized scalar concentration -» 

Q   mean generalized scalar concentration _. 

q   turbulent generalized scalar concentration fluctuation 

Rij ^ij + Dij/At 

r radial coordinate 

r. ,, radial coordinate of center of cell ij 

r. radial coordinate of outer boundary of cell ij 

r.   radial coordinate of particle k 

S1   instantaneous salinity (or solute concentration) 

S   mean salinity (or solute concentration) 
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T' instantaneous temperature 

T mean temperature 

t time 

Ü' instantaneous velocity (vector) 

U mean velocity (vector) 

u turbulent velocity fluctuation (vector) 

u radial velocity 

u, radial velocity of particle k 

v vertical velocity 

v, vertical velocity of particle k 

W longest gravity wavelength present 

w weighting function 

AX generalized space interval 

z vertical coordinate 

z .  vertical coordinate of center of cell ij 
j 

vertical coordinate of upper boundary of cell ij 

vertical coordinate of particle k 

turbulence model functions 

mean flow strain rate tensor 

Kroeneker delta function 

3   denotes partial differentiation 

A   denotes a finite difference or interval 

V   vector nabla operator 

e   eddy viscosity 

e*  e + u 

i:      ij 
K   molecular thermal diffusivity 

1+h 
\ 
or 

3 

YJ 
r. . 
ID 

'S. , 
ID 
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ü'       generalized mean flow strain rate gradient 

J 

. 

A 

Ao»Ai,..successive approximations to A 

A   turbulent macroscale 

X   turbulent microscale 

u   kinematic viscosity 

£   density variation factor ■ 1 + =£ 
P« 

n   source term for scalar quantity Q 

TT 3.14159265... 

p fluid density 

o specific heat 

$' instantaneous pressure 

<t> mean pressure 

<J) turbulent pressure fluctuation 

^ geometric function for cylindrical coordinates 

generalized mean flow strain rate 

1 

J 

J 

1 

I 
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ERRATA 

IRA-TR-1-70, "The MACYL6 Hydrodynamic Code: A Numerical 
Method for Calculating Incompressible Axisymmetric 
Time-Dependent Free-Surface Fluid Flows at High Reynolds 
Number," by John W. Pritchett, 15 May 1970. 

p. 9:  sentence after Eq. (11-27) should read: 

"Difficulty will of course be experienced in calculating 
the A distribution,..." 

p. 12:  Eq. (11-43) should read: i. 
3Q t  3 
3t  3xa 

(U.Q) = 
^ 

(C i 3Q ■ u.q ) + nrt x.     1H  ' Q 


